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Abstract

This paper presents a sub-pixel thermal anomaly detection method based on predicting background pixel intensities using a non-linear function
of a plurality of past images of the inspected scene. At present, the multitemporal approach to thermal anomaly detection is in its early
development stage. In case of space-borne surveillance the multitemporal detection is complicated by both spatial and temporal variability of
background surface properties, weather influences, viewing geometries, sensor noise, residual misregistration, and other factors. We use the
problem of fire detection and the MODIS data to demonstrate that advanced multitemporal detection methods can potentially outperform the
operationally used optimized contextual algorithms both under morning and evening conditions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and background

Early detection of fires from space-borne measurements is
important from operational and economical perspectives, due to
the need to monitor vast territories, the high rate of fire spread,
substantially higher costs of fighting large fires, as well as
profound consequences of biomass burning for climate, global
carbon budgets, ecosystem functions, and other environmental
costs. There are many factors currently limiting application of
satellite remote sensing for early fire detection, among which
are infrequency of passes, inevitable lag in data dissemination,
and low spatial resolution. This places development of
advanced data analysis methodologies that are capable of
extracting critically needed information as a key element in
justifying the need for new satellite missions.

Today's operational systems for satellite-based fire detection
share the same general structure. They consist of several tests that
are merged by an algorithm, coupled with auxiliary techniques to
filter out false positives. The tests themselves, in effect, compare
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the observed intensity at an inspection (detection) image pixel
with its expected intensity under the ‘non-fire’ hypothesis. While
the structure and the algorithms for merging the tests are
important and are always being improved, there is a significant
motivation to develop additional and/or alternative tests that have
comparable or better performance than the existing ones. An
especially attractive situation is when the new and existing tests
utilize different or independent information, leading to the
possibility of boosting the detection performance by combining
them. From this perspective, a multitemporal approach may have
great potential, because the operational algorithms utilize only
information from a single image. In this paper, we show how to
construct novel anomaly tests by using non-linear multitemporal
prediction of radiometrically uncalibrated thermal imagery and
demonstrate their potential value for detecting small-scale fires.
Below we first briefly discuss the ideas behind single-date and
multitemporal detection.

1.1. Single-date approaches to fire detection

The single-date fire detection methods use fixed-threshold or
contextual tests, or both. The fixed-threshold thermal tests (e.g.
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Arino &Melinotte, 1998; Li et al., 2000) flag a pixel as fire if the
brightness temperature in one or more spectral bands exceeds a
pre-specified threshold. Because the optimal value of the threshold
is spatially and temporally variable and unknown a priori, it is
selected conservatively to reduce the false positive rate. As a
result, only large flaming fires are detected with high probability.

Contextual tests typically attempt to predict the background
intensity at a pixel in question by averaging the intensities (or
brightness temperatures) across the neighboring pixels. The
tests then decide that the pixel is a hot anomaly, if the observed
value exceeds the predicted value plus ν times standard or mean
absolute deviation of the neighboring pixel intensities. Thus, the
performance of contextual tests is inversely related to the
natural background variability in the inspected scene. This
circumstance makes it more difficult to detect small-size fires
during daylight when background temperature contrasts are
relatively high. The contextual tests are used in the methods by
Flasse and Ceccato (1996), Justice et al. (2002), Giglio et al.
(2003), and others. A more detailed account of the strong and
weak points of several fixed-threshold and contextual algo-
rithms can be found in Ichoku et al. (2003).

1.2. Multitemporal detection

The multitemporal approach to detection defines fires as a
class of anomalous changes in the scene.

In general, the dynamics of the environment and the sensor
response function precludes detection of anomalous changes in the
scene using simple subtraction of pixel intensity values across time.
The difference images are highly cluttered, because the measured
pixel intensities of different objects or materials undergo temporal
changes in different and non-proportional amounts. Therefore,
along with detecting the anomalous changes, a detection system
would also create a high rate of false alarms. Several empirical
unsupervised methods to analyze difference images and extract
change regions are discussed in Melgani et al. (2000).

Instead of comparing pixel intensities, it is reasonable to
retrieve and compare time-invariant quantities. In thermal
infrared imagery, this entails estimating temperature and
emissivity from calibrated thermal data. This is a complex
problem that has not yet been completely resolved (Dash et al.,
2002). Even if it had been resolved, much of the thermal
information separating targets from background lies exactly in
the temperatures which are not useful, because they themselves
depend on dynamic weather conditions. Hence, the absolute
value of the change in object temperature cannot always be used
directly for anomaly detection.

Other researchers (Jensen, 1983; Schaum & Stocker, 1997)
have observed that a multispectral image can be predicted by a
linear operator of a previous multispectral image, provided the
images are accurately registered, i.e. the pixel intensities can be
transformed jointly. They applied this observation to detect
changes in a scene and reported considerable improvements
over the simple image subtraction. These methods for joint
prediction share underlying ideas with the image normalization
approach proposed by Schott et al. (1988) and extended by
Furby and Campbell (2001) and by Du et al. (2002). In this
approach, a set of pre-selected pseudoinvariant targets, such as
roof tops, roads, parking lots, and other manmade objects are
used to find the coefficients for a linear transformation between
two images of different dates. The restrictive assumptions
behind these methods are listed below:

1) images are registered across time to sub-pixel accuracy;
2) the pixel can be analyzed only if the observation from the

previous time image is available for that pixel;
3) external factors, such as weather, illumination, and survey

conditions, as well as preprocessing operations are spatially
invariant;

4) internal properties of background objects are temporally
invariant;

5) the observation process model is linear;
6) temporally invariant objects can be located using prior

information.

Unfortunately, datasets obtained from space-borne platforms
typically have features that violate these assumptions. In
particular,

• both temporally and spatially variable viewing geometry,
due to wide-angle surveillance;

• misregistration and flight line edge effects;
• spatially variable influence of weather conditions (e.g. partial
cloud cover, local precipitation etc.);

• each image may have many pixels with missing values;
• impossibility or difficulty of excluding abnormally changed
objects from the (pseudoinvariant) training set for back-
ground, including but not limited to:
· target objects,
· small convective clouds,
· thin clouds typically bordering large clouds,
· systematic and/or abrupt changes in vegetation (e.g.
phenological stage transitions or harvest),

· spatially and temporally variable sensor failures of non-
extreme amplitude (e.g. stripes).

These factors limit the range of applications of simple
multitemporal techniques for thermal data. To the best of our
knowledge, multitemporal approaches have not yet been used
for fire detection.

Nevertheless, Koltunov et al. (2003) suggested and theoret-
ically demonstrated that the multitemporal prediction approach
has the potential to overcome many of these problems. This
resulted in a method for classification and anomaly detection
under an assumption of dynamic environment conditions, called
the Dynamic Detection Model (DDM), which generalizes the
multitemporal approaches discussed above. They showed that
the choice of past images used for prediction and the number of
past images are important for anomaly detection performance.
In particular, when the observation process is assumed linear,
while both the temporal changes of object internal properties
and the spatial variability of external factors are insignificant,
then a minimum of eight past images are necessary for thermal
imagery prediction.
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In this paper (Section 2) we present a method for detecting
thermal anomalies based on a modified version of the DDM
using non-linear multitemporal prediction. At the training stage
the method searches for a locally optimal set of past basis
images. At the detection stage, these basis images are combined
in a non-linear way to predict the background pixel intensities in
the inspection image. Pixels whose observed intensity is
statistically significantly different from the predicted intensity
are flagged as anomalies.

Section 3 describes the application of the proposed method
for MODIS (MODerate Resolution Imaging Spectroradiometer)
for a thermal image sequence acquired over Northern California.
The potential of the method for early fire detection is demonstrated
in Section 4 by comparing the power of the corresponding tests
constructed by the presented method, a linear DDM, the state-of-
the-art contextual method, and a simple multitemporal technique-
example: bi-date normalization.

2. Method: non-linear Dynamic Detection Model

2.1. Multitemporal non-linear model of background dynamics

Consider a scene S consisting of M pixel locations. The
value of intensity measured for a given band at a spatial location
s and a time moment t is denoted by w(s,t). We also let Wt

denote the band image collected at time t. The images in the
sequence are obtained via a spatio-temporal observation process
whose analytical form is unknown.

The background object intensity observed at a time t and
location s can be represented as a function of intensities that
were observed at s previously, at P past time moments. We term
these moments basis times, and denote them tb ¼def ðt1; N ; tPÞ.
Mathematically, the model is written as:

wðs; tÞ ¼ H½wðs; t1Þ; N ;wðs; tPÞ; gðtÞ� þ et; ð1Þ
where γ(t) stands for the parameter vector. This vector depends
on the observation time t and does not depend on the spatial
location. Hence, operator H is a space-invariant operator, i.e. it
transforms past images into a current image jointly, following
the same rule for all pixels. The imagesWt1,…,Wtp will be called
basis images and are all together denoted by Wb.

The variable ε accounts for the random part of the spatio-
temporal variation in background intensity. We adopt the
assumption that at each time moment ε is normally distributed
with zero mean and unknown standard deviation σt.

The objects (pixels) whose intensity values at the detection
time are observed to be significantly different from the ones
predicted by the right-hand side of Eq. (1) are the objective of
the analysis and called anomalies.

Readers interested in the general mathematical basis for why
multitemporal predictability of physical spatio-temporal obser-
vations exists are referred to Appendix B.

2.2. Unsupervised model estimation

The functional form of H and the parameter vector γ are
unknown and therefore must be estimated. As a feasible
practical way of estimation we use a subset of a complete family
(Milman, 1999) of simpler functions to approximate the
unknown H. In this paper we limit ourselves to seeking a
quadratic model, which is the simplest non-linear model:

H½Wb; gðtÞ� ¼ g00ðtÞ þ
XP
k¼1

gk0ðtÞWtk

þ
XP
k;S ¼1

gkS ðtÞWtkWtl : ð2Þ

Note that some coefficients in this representation can equal
zero.

Given an inspection image Wt, the parameter vector γ(t) can
be estimated in the least squares sense, using indicators
of prediction. By prediction indicators we term pixel locations
s1,…,sN, (N exceeding P(P+1) /2+P+1, which is the number of
unknowns in model (2)), whose correspondence across time has
been established. For example, the images of the scene can be
registered across time or georeferenced. The estimated γ(t) is
used at the detection time to predict the intensities for all pixels
for which observations at the basis times are available.

Thus, the principal sub-problems in our approach include

— determining the prediction coefficients γ at the detection
time,

— choosing the basis time vector tb, and
— determining the indicators of prediction.
2.2.1. Computing prediction coefficients
Given a vector of basis times tb and a set of prediction indicators,

the prediction coefficients are determined by stepwise regression.
At each step of thismethod, terms are added to or removed from the
model to end up with a maximal number of statistically significant
terms. Along the way we obtain the estimate of σt (or equivalently,
the r.m.s.e. of the predictor), which is adjusted for the degrees of
freedom. Furthermore, the statistical significance ζkℓ of the
estimated coefficients γkℓ are determined. The coefficients whose
significance values are less than a threshold α are zeroed and so is
the significance. After the model parameters have been estimated,
the indicators that are extreme outliers to the model (i.e. pixels for
which the absolute value of the prediction residual exceeds 5σt) are
determined. They are removed from the set of indicators, and the
coefficients γkℓ are re-estimated. This process continues iteratively
until no extreme outliers to the current prediction model are found.

2.2.2. Determining basis times
The basis times are determined in advance, at the stage of

training the detection system. The training sequence is selected
from all available past images of the scene. This sequence is
split into Selection subsequence (SEL) and a Test subsequence
(TST). Phenomenological considerations (Koltunov et al.,
2003) suggest that both subsequences should span a high
diversity of weather conditions and other conditions of data
acquisition, in order to construct a prediction model that is
appropriate for various objects and future external conditions.
To reduce the influence of overall image brightness on basis
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time selection, the images from TST are normalized to have the
same mean and standard deviation.

In this work, selection of the basis time vector is addressed
by forming and examining vector-candidates τ from SEL to
minimize the prediction error function E(τ) over TST:

EðsÞ ¼def max
ta TST

½rtðsÞ�Z min
sa SEL

; ð3Þ

subject to the requirement that all terms in the prediction model
are statistically significant. In other words, among all τ-
candidates we chose the one for which over the Test detection
images the error of prediction was minimal.

Examining all candidates is not feasible computationally.
Therefore, it is reasonable to examine a limited number of
candidate-vectors to find a locally optimal one as follows. The
Selection subsequence images are preprocessed to exclude from
consideration images with too many missing observations. An
initial τ=τ0 is selected to include images acquired under
essentially different weather and survey conditions, specifically,
at times of the day spaced by at least 30min.Among the basis time
moments spaced by less than 30 min, the moment with the least
number of missing observations is chosen. The rest of the
moments are moved to the list of basis times to be added, denoted
by τadd. Next, we form the list of basis times to be removed from τ
and denote this list by τrem. Initially, τrem is set to τ0. Finally, the
search algorithm described in Appendix A is run.

In general, the vector of basis times can be different for
different bands.

2.2.3. Selecting the prediction indicators
The known locations that have anomalous or missing

observations at any basis time are excluded from consideration.
The indicators are selected at random from the remaining pixels.

2.3. Hot anomaly detection

At the detection stage, the inspection image Wt is first
registered toward the basis image sequence. Next, the prediction
Fig. 1. Natural color image of the test scene located in Northern Californ
coefficients γ(t) corresponding to the inspection image are
determined (Section 2.2.1), along with the r.m.s.e. of prediction,
σt. For each pixel, the coefficients are introduced into Eq. (2)
and the predicted value of intensity,bwðs; tÞ, is computed by
evaluating the right-hand side of Eq. (1). Finally, to detect hot
anomalies the following test is applied:

wðs; tÞ−bwðs; tÞ
rt

Nz: ð4Þ

The threshold z controls the sensitivity of the detector. It can
be fine-tuned experimentally to optimize the overall perfor-
mance of a complete detection system, which is supposed to
include the above test.

3. Application for MODIS thermal image sequence

The experimental work described in this Section has two
objectives. The first objective is to evaluate the image prediction
quality (goodness of fit) in real conditions using satellite remote
sensing data from the MODerate Resolution Imaging Spectro-
radiometer (MODIS) instrument. Secondly, we compare the hot
anomaly tests constructed by the non-linear DDM to the
equivalent contextual tests currently used for fire detection, and
to other methods.

3.1. Dataset

The scene S used in this study is located in Northern
California and occupies over 150,000 km2. The scene is
confined within a bounding rectangle with the corner
coordinates: −124.6W, 42.04N (upper-left) and −117.2W,
39.6N (lower-right). Fig. 1 displays the natural color image of
the scene. The conditions in the scene are typical of the
complexity of montane semi-arid regions in high fire risk
western U.S. landscapes, with a mosaic of forests, shrubs,
grasslands, urban structures, and water bodies. Vegetated and
therefore burnable land is ubiquitous over the land area. The
ia. The image size is 250×600 pixels at a ground resolution of 1 km.



Fig. 2. Determination coefficient r2 and the r.m.s.e. of background prediction, both adjusted for the degrees of freedom. The r.m.s.e. is calibrated to brightness
temperature.
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MODIS instruments on the Terra and Aqua satellites overpass S
three to seven times each 24-hour period, collecting the data
under different solar-view geometries and a nominal ground
resolution of 1 km at nadir. Two thermal bands: band 22
Fig. 3. Sample scatter plots of th
(∼ 4 μm) and band 31 (∼ 11 μm) available as part of the
MODIS swath Level 1B standard products MOD021KM and
MYD021KM, were used in this work. These products contain
scaled integer values that could be linearly transformed to at-
e image prediction residual.
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sensor radiances. The scaled integer values for bands 22 and 31
will be denoted by R4 and R11, respectively, and the
corresponding brightness temperatures — by T4 and T11.

The original multitemporal sequence consisted of 797 image
frames acquired for eight months (March,1–November,1) of
year 2004. The frames with the time-stamp differences not
exceeding 5 min were mosaiced, because they are automatically
part of the same data swath. The resulting sequence contained
701 images. The first 556 images were used for training the
anomaly detection algorithm, and the last 145 images spanning
52 days — for assessing the algorithm performance.

3.2. Method implementation details

All images in the sequence were georeferenced to a
common projected coordinate system with nearest-neighbor
interpolation. The resulting ground pixel size was 1 km. To
avoid processing cloud-contaminated observations, the
MODIS cloud mask data (MOD35and MYD35 products)
were used. The pixels flagged ‘not-determined’, ‘confident
cloud’, or ‘probably cloud’ in these products, were marked as
having missing values.
Fig. 4. False positive rates at several fixed true detection rates f
The unsupervised training procedure described in Section
2.2 resulted in a vector tb containing 27 basis times. The basis
times were selected to minimize the prediction error for band R4

only. First 556 images formed the Selection subsequence and
the next 19 images (557 to 571) — the Test subsequence.

As can be seen from Eq. (1), the multitemporal predictor is
applicable to only those pixel locations that were available at all
basis times. However, primarily due to spatially and temporally
variable cloud cover, many pixels have missed observations in
one or more basis images. Therefore, these pixels are not
predictable using the best basis time vector resulting from the
training procedure. To overcome this problem, a straightforward
procedure was implemented in this paper. Given the best basis
time vector tb of length P, at the training stage we constructed P
additional vectors of length P−1 each, by excluding one basis
time from tb. At the detection time, the prediction coefficients
were computed for each vector as described in Section 2.2.1,
using as indicators at most 2 ·104 pixel locations. These
locations were chosen at random out of those that were not
missing in the current basis images or in the inspection image.
This procedure allowed us to predict ∼ 70–80% of the pixels
available at the detection time, which is about 105 pixels per
or detection algorithms applied to the 4-μm band R4 only.
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inspection image. Finally, for each pixel a predictor with the
smallest r.m.s.e. (adjusted for the degrees of freedom) is chosen
among the predictors for which the pixel does not have missing
values at the basis times.

The statistical significance threshold α was set to 3.5.

4. Performance evaluation

4.1. Goodness of fit

Fig. 2 displays the sequences of determination coefficients r2

and the sequences of the r.m.s.e. values calibrated to brightness
temperature. Note that the values of r2 are high for both thermal
bands, R4 and R11, both evening and morning times. The
background prediction performance does not deteriorate with the
range of prediction, which manifests itself in the temporal
consistency of r2 and r.m.s.e. The determination coefficients are
similar between the evening and morning images. Fig. 3 plots the
prediction residuals for typical example-images. Note that the
background pixels included many undetected cloud pixels, often
flagged ‘probably clear’ in the MODIS cloud mask product.
These pixels are in fact ‘cold’ outliers to themodel. Therefore they
considerably influence the quality of the background model.
Fig. 5. False positive rates for the detection algori
4.2. Simulated fires on real background

This Section describes the comparative experimental eval-
uation of the potential of the presented anomaly detection
method in an example detecting small-scale fires. We have
simulated 10 groups of 100 idealized fires each. All 1000 fires
were assumed to have the same kinetic temperature — 600 K
and placed in the pixel centers. The area of each fire in the k-th
group was set to k · 100 m2. The emitted radiance (under the
blackbody assumption) was computed by Planck's law for each
fire to alter the actual pixel background radiance, according to
the anomaly area proportion and the band wavelengths. Finally,
the radiances were converted back to the scaled integer values.
For each of 145 inspection images, the simulated fires were
placed at random in those pixels that

a) were located on land
b) did not have missing observations (see Section 3.2)

The rest of pixels, excluding known actual fires or pixels
having missing values, were considered ‘non-fire’ pixels.

Simulated fires on real backgrounds were used to compare
the proposed method to other detection methods (Section 4.2.1).
thms combining the R4-test with the ΔR-test.



Fig. 6. False positive rates averaged over 52 days for the detection algorithms
combining the R4-test with the ΔR-test.
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With these data we assessed the reliability of detecting a random
new fire (ignition) that could occur anytime and anyplace on
land and occupy an area of 100 to 1000 m2 at the detection time.
In general, using the simulated fire data may bias the absolute
characteristics of the method performance. However, the use of
simulated data is necessary and acceptable for comparing
different methods or their components. Moreover, actual fires
occur in the image with low probability. Therefore, modeling
anomalies is often the only practical way to obtain a large and
representative test set over the limited time range and scene size.

4.2.1. Comparison with alternative approaches
We assess performance of the proposed anomaly detection

method (further abbreviated as DDM-NL) by comparing it with
three other techniques, as abbreviated and described below.

4.2.1.1. MOD. The contextual method implemented in the
standard MODIS fire product (MOD14) logically combines a
series of contextual and absolute-threshold tests, preceded and
followed by additional algorithms to filter out false positives.
The contextual tests are applied to the swath data and use valid
neighboring pixels in windows of variable size to estimate two
background statistics: the mean and the mean absolute
deviation. Details can be found in Giglio et al. (2003). In our
comparison we used two contextual tests comprising the central
part of the method:

T4NlT4 þ m4d4 ð5Þ

DTNlDT þ mdDT ; ð6Þ

where DT ¼def T4−T11; lT4 ; lDT denote the mean values; and δ4,
δΔT denote the mean absolute deviations. The thresholds ν and
ν4 that can be calibrated to detection confidence control the test
sensitivity. The optimized selection of valid neighbors and the
window size was implemented as described by Giglio et al.
(2003).

4.2.1.2. LinBiDate. A two-date method that predicts the
detection image by linearly transforming a previous image
taken at a time as close as possible to the same time of the day as
the detection image, e.g.:bR4ðtÞ ¼ aR4ðtprevÞ þ b, and detects
hot anomalies analogously to Eq. (4).

4.2.1.3. LinDDM. Multitemporal prediction by Eq. (1) with a
linear operator of prediction.

The last two methods, LinBiDate and LinDDM, were
included to assess the importance of two essential features of
the presented method: the plurality of past images used in
modeling background and the non-linearity of the model.

All methods but LinBiDate were applied to 145 detection
times. To avoid inventing a way to deal with missing
observations that would be appropriate for LinBiDate, we
applied this method to 21 cloud-free evening images. The
multitemporal methods were applied to R4 and DR¼def R4−R11,
which provided the equivalent for the brightness temperature
tests, Eqs. (5) and (6) by Giglio et al. (2003). Because the
images were resampled with nearest-neighbor interpolation
before simulating the anomalies, only pixels corresponding to
the original swath data pixels were included in the background
characterization by MOD, as is described in Giglio et al. (2003).
Finally, for all methods we logically combined the two tests, the
one based on R4 and the one based on ΔR, to obtain the higher
performance fire detectors. Note that all methods combined the
single-band tests in the identical way: “a pixel is flagged fire if
and only if both tests return true”. Therefore, the discrepancy
between the detection results were solely due to differences
between methods.

Figs. 4 and 5 plot the false positive rates given the fixed true
detection rates for 4-μm band test and for the combination of the
R4-test and ΔR-test, respectively. The sensitivity thresholds of
each algorithm were adjusted to achieve the desired detection
rates at each frame. The 4-μm band tests constructed by our
method, DDM-NL, and by the state-of-the-art contextual
method, MOD, have similar power and outperform other ap-
proaches in evening hours. For about 10% of the morning 4-μm
images the multitemporal tests yielded remarkably more false
positives than MOD. This can be attributed to local changes
(relative to the basis times) in vegetation conditions, or to local
sunlight influences that the multitemporal space-invariant
background model failed to account for. However, in both
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channels R4 and R11 these anomalous changes were similar and
therefore did not appear significant in ΔR. This phenomenon
seems to be consistent. As a result, the detection algorithm
DDM-NL using the combination of R4-test and ΔR-test is
noticeably better than its counterparts, as is evident from Fig. 5.
Averaged over the 52-day period false alarm rates are shown in
Fig. 6. Overall, DDM-NL committed about 60% fewer false
positives than MOD in the evening and 500 to 1500% fewer
false positives than MOD in morning hours.

We used fires of fixed absolute intensity, whereas the
morning background was substantially cooler than evening.
Hence, all methods performed for morning times better than for
evening times.

5. Discussion

The objective of the prediction model is not to merely detect
objects with changed internal properties. In fact, under real
conditions after extended surveillance periods the object
properties at most pixel locations are found to have changed
since the basis times. When this is the case, the goal is to
discriminate between two classes of changes: “natural” changes
and anomalous ones. The natural changes are due to the
combined effects of object internal properties and various
external factors. For example, the soil thermal inertia depends
on the soil water content, which in turn depends on the weather
history, ground topography, soil chemistry, etc. In addition,
natural changes can be attributed to the deviation that is not
explained by the space-invariant prediction model, which has
been derived from a physical perspective. In an unsupervised
setting, pixel-examples sampled separately and representatively
from the two classes are not available. However, we can and did
make an assumption about the probability distribution of the
magnitude of unexplained natural changes within the scene and
estimate the parameter (σt) of that distribution.

In the current implementation, to overcome the problem of
missing observations at basis times we excluded basis times one
by one. An alternative method could be to predict the missing
basis values by Eq. (1) with an alternative set of basis images.
Both approaches (predicting basis observations and excluding
basis times), actually build a plurality of predictors each of
which is applied to a different, and in effect, random subset of
the scene pixels. Although the currently implemented procedure
is sufficient for the purpose of demonstrating the potential value
of the method, it is necessary to derive optimal algorithms for
missing observations at basis times. This will be an important
subject of further research.

Formally, the method is scene-dependent. The issue of how
much the detection results depend on the choice of the scene
size needs further study. In practice, large monitored areas
should be partitioned to separate scenes each of which could be
processed in parallel.

The non-linear space-invariant prediction model is only a
simplified approximation of the true spatio-temporal observa-
tion field. Therefore we inevitably introduced a prediction error.
There are two valid and mutually related measures of the
approximation accuracy: the r.m.s.e. and the spatial correlation
(clustering) of the prediction residual. The latter means that due
to insufficiently sophisticated modeling the neighboring pixels
tend to have similar values of prediction error. In this paper, we
looked for a model that is locally optimal within a family of
quadratic models. Future efforts should develop computation-
ally feasible algorithms for selecting an optimal model out of
broader families of model-candidates.

In fact, the first 19 images out of total 145 images used for
testing were also involved in training the prediction model.
Nevertheless, as apparent from Figs. 4 and 5 the detection
performance is virtually the same, thus indicating that the model
is not overfitted.

The fire test data used in assessing the method performance
consisted of sub-pixel size anomalies only. For the presented
method each pixel is processed separately. Therefore, the area of
a single detectable fire is practically unbounded from above,
contrasting with contextual methods. This feature may lead to
improved detection of large-scale smoldering fires. Another
advantage of the multitemporal approach is its applicability to
sensors of various modalities. Therefore, future advances in
multitemporal detection algorithms will improve detection
systems of other sensors and platforms.

In the experiment described in this paper, the performance
did not deteriorate with time. Therefore, it is reasonable to
anticipate stable performance far beyond the 52-day prediction
range we used. Nevertheless, anomalous changes accumulate
over time. Therefore the same set of basis images will not
remain good indefinitely long for all pixels. For example, as
soon as an image region changed anomalously and permanently
(e.g. burned areas), the past basis images can no longer be used
for predicting the region. Thus, a future operational detection
system based on multitemporal prediction will need to include
an algorithm for updating the set of basis images.

In addition to issues already discussed, other technical issues
must be addressed in the course of developing a future complete
operational target detection algorithm, including:

— employing additional bands in the analysis;
— optimizing image registration of swath data;
— image pre-filtering to reliably mask out areas where the

target object occurrence is unlikely;
— rejecting specific types of false alarms;
— developing an overall detection confidence measure;
— reducing computational costs of training and detection;
— statistical and phenomenological analyses of sub-algo-

rithm performance by simulated and real data.

Also, following implementation of the first version of a com-
plete algorithm, extensive tests using true real fire information and
other sensor data must be performed.

Finally, we acknowledge certain limitations in the presented
approach:

• the accuracy of the background prediction may be lower for
areas with high cloud cover frequency. When the scene is
severely clouded at the detection time, a sufficiently complex
prediction model cannot be built for the lack of indicators. In
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this case, the detection method may need to look for indicators
beyond the scene being processed. Pixels that do not have even
a single past cloud-free observation cannot be processed;

• non-linear multitemporal prediction is computationally more
demanding than contextual algorithms, especially when the
basis images are not cloud-free;

• severe misregistration of the images across time reduces the
sensitivity of detection and may cause systematic false
positive patterns.

6. Conclusion

The problem of fire detection from satellite observations has
received considerable attention in remote sensing literature. The
most prominent and optimized algorithms utilize spectral or
spatial information, or both. Unfortunately, little progress, if
any, has been reported about using temporal dimension of
space-borne data for fire detection. In this paper, we presented a
multitemporal algorithm for detecting hot anomalies. This
algorithm, non-linear DDM, was applied to MODIS thermal
image sequence and compared to other methods. As is
mentioned in the previous section, we recognize that the
current, non-optimized version of the presented non-linear
DDM has not predicted the inspection images perfectly.
Nevertheless, even at this early stage of development, the
multitemporal prediction approach has demonstrated its pro-
ductivity and usefulness for solving problems of real environ-
mental complexity. Perhaps, it is more important to remember
that the contextual detection methods and the Dynamic
Detection Model are based on mutually independent informa-
tion. Therefore, considerable gain in fire detection performance
for the operational systems is anticipated after improving and
intelligently merging the two approaches.
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Appendix A. The search algorithm for basis times

Let d(t,τ) denote the distance from a time epoch t to a time
vector τ=(t1,…,tP) and be defined by

dðt; sÞ ¼ min
k¼1; N ;P

jt−tk j: ðA:1Þ

Using the notations of Section 2.2.2 we describe the search
procedure as follows:

Step 1. if both τrem and τadd are empty, go to step 7.
Step 2. add to the current τ a new basis time tkbest∈τadd, at which

maxk=1,…,P[d(tk,τ)] is attained, and exclude it from τadd;
Step 3. if E(τ) decreases, accept current τ and go to step 1,
otherwise: restore previous τ ;

Step 4. if the list of basis time to be removed is empty, go to step 1;
Step 5. remove from the current τ the basis time tkworst∈τrem at

which mink=1,…,P[max{ζk, ζk1, …, ζkP}] is attained, and
exclude it from τrem;

Step 6. if E(τ) decreases, accept current τ and go to step 4,
otherwise: restore previous τ and go to step 1;

Step 7. quit searching.

Appendix B. Mathematical insight into the image
predictability phenomenon

Below we mathematically derive the law of predictability of
a spatio-temporal observation field. An example of an
observation field is a remote sensing image of a scene. The
prediction model will be derived using a set of simplifying
assumptions that are necessary to emphasize the principle. As
demonstrated in this paper by the MODIS thermal imagery
prediction, the assumptions under which the model is
applicable, are much weaker than those used in deriving the
model. Theoretical explanation of this fact is given elsewhere
(Koltunov et al., 2003).

Let W={wi}i=1
N denote a spatio-temporal field of physical

observations, obtained via an observation process F (either
known or not). Assume that for a given transform F , an element
(e.g. pixel intensity) wi being observed at spatial location s at
time t, depends on two types of factors: the internal properties
(i.p.) of the observed objects, denoted by β, and the external
influence factors (e.f.): X . In real physical processes, both i.p.
and e.f. depend on time t and spatial location s, and thus:

W ðs; tÞ ¼ F½bðs; tÞ;Xðs; tÞ�: ðB:1Þ

For the sake of brevity of the derivation, we introduce several
constraints into the above general model (B.1).

(a) internal properties β do not change with time, i.e. β (s,t)=
β(s);

(b) external factors Xðs; tÞ are the same for each element of
W, i.e. Xðs; tÞ ¼ XðtÞ;

(c) each element wi is autonomous, meaning that its i.p. are
independent of the i.p. of any other wj;

(d) any wi has a finite number mi of internal properties;
(e) the number of observation field elements is finite.

If constrained by (a)–(e), model (B.1) can be written in the
separate-variable form as follows:

W ðs; tÞ ¼ F½bðsÞ;XðtÞ�: ðB:2Þ

Measure the observation field at P time moments, at which
the external factors are essentially different, thus obtaining a
system of N ·P equations

Wtj ¼def W ðtjÞ ¼ F½b;XðtjÞ�;
where j ¼ 1; N ;P; P[max

i
fmig; ðB:3Þ
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wherein each element wi appears P times. Therefore, if operator
F is invertible for the chosen set t1,…tP, then the i.p. can be
uniquely found from Eq. (B.3) as

b ¼ G½Wt1 ; N ;WtP ;X t1 ; N ;X tP �;
where X tj ¼def XðtjÞ:

ðB:4Þ

Because Eq. (B.2) always holds, we can introduce Eq. (B.4)
into Eq. (B.2) to obtain at any new time1 tν

Wtm ¼def W ðtmÞ ¼ Htm ½Wt1 ; N ;WtP �: ðB:5Þ
The predictorHtm itself depends only on e.f.XðtvÞ;X t1 ; N ;X tP .

Note that these factors should not be considered as only
instantaneous influence factors. Some of the e.f. can be long-
lasting, for example, some of the weather factors influencing
temperatures. However, the predictor does not depend on internal
properties that are different for different elements wi of the
observation field.Hence, this predictor transforms ‘old’ fields into a
‘new’ field jointly, element into element, according to the same law
for all elements.

Thus, we have derived a property that can be conveniently
formulated as follows:

I. Any physical field (including an optical or thermal
image) currently observed can be arbitrarily accurately
approximated by a space-invariant transformation of a
finite number of fields previously observed.

The space-invariant form of the predictor remains intact even
if the internal properties and external factors depend both on
space and time, but these dependencies are separable.
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