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This paper systematically derives and analyses the generic phenomenon of

space-invariant predictability of spatio-temporal observation fields using past

multitemporal observations. We focus on thermal infrared remote sensing as a

non-trivial example illustrating the predictability concept. The phenomenon and

the systematic analysis thereof are experimentally demonstrated to be

productive for developing effective automated anomaly detection and classifica-

tion methods operating under the assumption of dynamic environment and

sensor response. Using a simple preliminary experiment involving uncalibrated

tower-based high-resolution thermal infrared surveillance, we test the con-

ceptual validity of the space-invariant multitemporal prediction and exemplify

its potential applications. In addition, we use a MODIS thermal image sequence

and the task of hot anomaly detection to demonstrate the applicability of the

approach for monitoring the status of large territories from space-borne platforms.

1. Introduction

The increased quantity, quality, and informational content of multitemporal remote

sensing datasets, as well as shorter revisit time of modern space-borne platforms, allow

new and complex thematic tasks to be defined, and hence, require that the scientific

community develop new and effective methodologies for data analysis. Multitemporal

technique development has focused mainly on the reflective spectral domain, while the

thermal infrared (TIR) domain has received much less attention in the remote sensing

literature. This paper discusses the concept of combining past uncalibrated thermal

images of a scene to predict the pixel intensities of a current image.

Most applications of multitemporal analysis involve (directly or indirectly) a

comparison of measurements from objects across time. However, under unsteady

environmental conditions (e.g. gusty wind or partial cloudiness), the pixel intensities

of thermal images may change considerably within minutes. Even when the weather is

relatively stable (weak wind, few clouds), intervals as short as 15–20 minutes between

collecting the previous and the current image data may adversely affect classification

or change detection, unless the target and background classes are well-separated.

Instead of comparing pixel intensities, it is reasonable to retrieve and compare time-

invariant quantities. In thermal infrared imagery, this entails estimating temperature
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and emissivity from calibrated thermal data. This is a complex problem that has not

yet been completely resolved (Dash et al. 2002). Even if it had been resolved, much of

the thermal information separating targets from background lies exactly in the

temperatures which are not useful, because they themselves depend on dynamic

weather conditions. Hence, the absolute value of the change in object temperature

cannot always be used directly for detection or classification.

Jensen (1983) and more recently Schaum and Stocker (1997) have observed that a

multispectral image of a scene can be predicted by a linear operator of a previous

multispectral image (or their sequence) of that scene, provided all the images are

accurately registered, i.e. the pixel intensities can be transformed jointly. They applied

this observation to detect changes in a fixed scene and reported considerable

improvements over the simple subtraction of images. Likewise, Carlotto (2000) has

experimentally compared linear vs. non-linear predictors and applied them for change

detection in Synthetic Aperture Radar (SAR) images, optical images, and for cross-

sensor prediction. These methods of joint prediction share the underlying ideas and

assumptions with the image normalization approach that has been proposed by

Schott et al. (1988) and extended by Furby and Campbell (2001) and by Du et al.

(2002). In this approach, pre-selected pseudoinvariant targets, such as roof tops,

roads, parking lots, and other manmade objects, or natural targets, are used to

determine the coefficients of a linear transformation between two images of the same

area. This approach requires the linearity of the observation process model, the

linearity of on-ground preprocessing operations, spatial invariance of the illumination

and atmosphere conditions (in particular, no partial shadowing), temporal invariance

of reflectance of a given target, image registration across time, and the negligibility of

the bi-directional reflectance function (BRDF) effects due to nearly Lambertian

surfaces or little temporal variability of the illumination source position. All this is

often nearly true with remote sensing in a reflective domain. This approach proved

effective for between-date calibration of Landsat TM reflective data of the same area.

1.1 Problem statement and scope of the paper

To date, the potential of a multitemporal prediction approach has not been fully

realized, with uncertainties about its theoretical basis, general properties, and

practical value beyond bi-date radiometric normalization of reflective images.

General questions to be addressed, which are critical for constructing working

methods, include:

- How many past images should be used for prediction?

- When should the past images be acquired?

- Is the band plurality critical to prediction?

- How can the underlying assumptions be weakened?

A problem where the usefulness of the approach is far from obvious, is monitoring

the status of large territories using satellite thermal imagery. Indeed, the prediction

quality would be reduced by various factors, including but not limited to:

N both temporally and spatially variable viewing geometry, due to wide-angle

surveillance;

N misregistration and swath edge effects;

N spatially variable influence of weather conditions (e.g. dynamic partial cloud

cover, local precipitation, etc.);
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N many pixels with missing values;

N small undetected convective clouds;

N thin undetected clouds typically bordering large, easily detectable clouds;

N spatially and temporally variable sensor failures of non-extreme amplitude (e.g.

stripes).

Thus, the applicability of multitemporal prediction for space-borne datasets needs

experimental demonstration.

This paper discusses the theoretical basis, presents algorithms, describes

experimental validation, and illustrates applications of the multitemporal prediction

approach. The theoretical part (§2) consists of mathematically and physically based

analyses of the approach, and we derive the space-invariant prediction model. Using

these systematic analyses, we address (§3) the general questions posed above. We

further present two methods based on multitemporal prediction: an anomaly

(change) detection method and a classification method. Both methods use past

uncalibrated imagery for constructing their decision rules under dynamic environ-

mental conditions, and they will be generically referred to as Dynamic Detection

Model(s) (DDM).

When applied for classification, the DDMs are attractive, because they enable a

recognition system to significantly separate in time the stages of training and

classification. As a result, the time-consuming labeling and statistical analysis of

training data to build the classification rule can be done before the acquisition of

inspection images. This leads to the previously unreported possibility of near-real-

time application of powerful classification algorithms capable of discriminating

between classes that have low separability. As an initial step in development, we

introduce a DDM based on the space-invariant prediction of Gaussian mixture

(GM) distributions of classes (§2.4). At the training stage, the DDM requires

multitemporal surveying of the scene and determining the class parameters for each

training survey. At the detection stage, the inspection image is used to transform the

class GM parameters so that they become appropriate for the conditions of the

detection survey. Finally, the pixels of the detection image are classified based on

the transformed parameters.

The experimental work presented in this paper (§4) has several objectives. The

first objective is to demonstrate the conceptual validity of the multitemporal

prediction approach, which is done using a preliminary experiment with high-

resolution thermal infrared tower-based remote sensing. Second, we apply the

approach to detect anomalous temporal changes in a scene and compare the

performance with that of simpler techniques. Additionally, we show the potential of

the GM-based DDM for thematic classification of anomaly regions. Finally, we

demonstrate the applicability of multitemporal prediction for space-borne datasets

by using a MODIS (MODerate Resolution Imaging Spectroradiometer) image

sequence. In this example, subpixel hot anomalies are detected at the 1-km ground

resolution over a scene occupying more than 150 000 km2.

2. Predictability and recognition under dynamic environmental conditions

We begin with a formal derivation of the abstract law (model) governing the

predictability of a spatio-temporal observation field: the space-invariant prediction

model. An example of an observation field is a remotely sensed image of a scene;

and we will use the terms ‘observation field’ and ‘image’ interchangeably. The
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derivation does not rely on linearity or knowledge of the observation process; the

model will be derived using a set of simplifying assumptions that are necessary to

emphasize the principle. In §2.2, we explain why the assumptions under which the
model is applicable, are much broader than those used in deriving the model.

We consider an observation process whose characteristics can be split into two

disjoint groups:

N characteristics depending only on spatial location (e.g. geometric distortion);

N characteristics depending only on time (e.g. radiometric calibration coeffi-

cients).

Regarded in this way, the observation process can be multitemporal sensing under

the same viewing conditions, possibly followed by a non-uniformity correction (e.g.

destriping, correction for straylight, etc.).

2.1 Space-invariant model for prediction in time

Let W~ wif gN
i~1 denote a spatio-temporal field of physical observations, obtained

via an observation process F (either known or not). For a given transform F , an

element (e.g. pixel intensity) wi being observed at spatial location s at time t, depends

on two types of factors: the internal properties (i.p.) of the observed objects, denoted
by a, and the external influence factors (e.f.): X . In real physical processes, both i.p.

and e.f. depend on time t and spatial location s, and thus:

W~F a s, tð Þ; X s, tð Þ½ �: ð1Þ

For the sake of brevity of the derivation, we introduce several constraints into the

above general model (1):

(a) internal properties a do not change with time, i.e. a(s, t)5a(s);

(b) external factors X s, tð Þ are the same for each element of W, i.e. X s, tð Þ~X tð Þ;
(c) each element wi is autonomous, meaning that its i.p. are independent of the

i.p. of other wj;

(d) any wi has a finite number mi of internal properties;

(e) the number of observation field elements is finite.

If constrained by (a)–(e), model (1) can be written in the separate-variable form as
follows:

W~F a sð Þ; X tð Þ½ �: ð2Þ

Measure the observation field at P time moments, at which the external factors are

essentially different, thus obtaining a system of N?P equations

Wtj ~
def
W tj
� �

~F a; X tj
� �� �

, where j~1, . . . , P ; Pomax
i

mif g, ð3Þ

wherein each element wi appears P times. Therefore, if operator F is invertible for

the chosen set t1, …, tP, then the vector of i.p. can be uniquely found from (3) as

a~GWt1 , . . . , WtP ; X t1 , . . . , X tP½ �, where X tj ~
def X tj

� �
: ð4Þ

Since (2) always holds, we can introduce (4) into (2) to obtain at any new time t5tn
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(more precisely, for any new external conditions):

Wtn ~
def
W tnð Þ~Htn Wt1 , . . . , WtP½ �: ð5Þ

Operator Htn
depends only on e.f. X tnð Þ, X t1

, . . . , X tP
. Note that these factors

should not be considered as only instantaneous influence factors. Some of the e.f.

can be long-lasting, for example, weather history. However, the prediction operator

does not depend on internal properties that are different for different elements wi of

the observation field. Hence, this operator transforms ‘old’ fields into a ‘new’ field

jointly, element into element, according to the same law for all elements. The fields

Wt1
, . . . , WtP

will be called basis fields.

Thus, we have derived a statement that can be conveniently worded as follows:

Any physical field currently observed can be arbitrarily accurately approximated by

a space-invariant operator of a finite number of fields previously observed.

A practical, feasible process of prediction is as follows: given the basis fields and

the new field currently observed, we represent H parametrically, using a presumed

form eHH of the model, which is

Wtn
& eHHWt1

, . . . , WtP
; ª tnð Þ½ �: ð6Þ

The parameter vector c is estimated, for example, in the least-squares sense using the

field elements whose correspondence across time has been established (see §3.3).

These elements will be termed indicators of prediction. Next, the estimates are used

to predict the remaining elements of the observation field. It is reasonable to start

searching for a good parametric model eHH from a linear model.

2.2 Prediction under less restrictive assumptions

Model (5) has been derived from the observation process model (2) with separate

dependencies: the internal properties of the objects depend only on spatial location,

whereas the external influence depends only on time. In a general situation this may

be not the case: both i.p. and e.f. may depend on space and time (see equation (1)).

However, both the internal and external factors can always be parameterized

approximately:

a~a s, tð Þ: ð7Þ

Denote by b(s)5{b1(s), b2(s)} the vector of space-dependent parameters of both

groups (a and X ), and by Y tð Þ~ y1 tð Þ, y2 tð Þf g the vector of time-dependent

parameters of groups a and X . Then the general model (1) becomes

W s, tð Þ~f b sð Þ; Y tð Þ½ �, ð8Þ

which is, again, of the form (2). The group of parameters b(s) will be called temporal

invariants, and the group Y tð Þ – spatial invariants. The analogue of system (3) is the

following system:

Wtj
~f b; Y tj

� �� �
, j~1, . . . , P, ð9Þ

from which the space-invariant prediction model (5) is immediately derived

following the way described in §2.1. The assumption that the i.p. values of a spatial

location are independent of the i.p. values of other spatial locations can be removed

analogously.
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The above mathematics suggests that the prediction model is actually based on

the general physical hypothesis that separable aspects (i.e. the invariants) play a

dominant role in forming many real datasets. Consequently, the error introduced

due to replacing observation process (1) with (8), can be sufficiently small for many

thematic tasks. The actual range of circumstances in which the prediction model (5)

is productive should be determined experimentally. Theoretically, we have shown

the reasons why this range is broader than (a)–(e) of §2.1. To this end, it is rather

interesting that model (5) with 20 basis images succeeded in the experiment (§4.1,

not yet discussed), in which none of the conditions (a)–(d) of §2.1 were met.

Furthermore, in §4.2 we will consider a real satellite dataset with many features

severely violating the initial, simplifying assumptions (a)–(d). Despite these features,

the separated-form approximation (8) of the real process (1) results in a useful

detection method.

2.3 Physical explanation of thermal image prediction

In the previous sections we presented a general derivation of the joint prediction law

for an unspecified spatio-temporal field of observations. Therefore, below we give a

brief thermo-physical explanation of the predictability phenomenon.

Without assuming diurnally periodic weather conditions, we can represent the

surface temperature T at time t in the following integral form (10) that is equivalent

to equation (A9) derived in Appendix A:

T tð Þ~T t0ð Þz
X5

k~1

ak

ð

t0

tGk t, T tð Þð Þ
ffiffiffiffiffiffiffiffiffi
t{t
p dt, ð10Þ

where Gk tð Þ denotes the heat fluxes into or from the surface, as prescribed mostly by

the surface energy balance; ak denotes functions of thermo-physical and emissive

properties; and t0 is the initial time moment. As shown in (10), some of the fluxes on

the right-hand side may also depend on the surface temperature, i.e. both on spatial

location and time. In contrast, the iterative solutions of (10) (at any required

accuracy) are of the form (8), which in turn implies a separable-form representation

for radiances. Applying the procedure described in §2.1 to this representation

results in a space-invariant predictor expressed in terms of physically meaningful

parameters.

Appendix A provides the derivation details and the explicit formulas of the

prediction operator under the simplest circumstances that can be briefly described as

follows: a narrow-channel, radiometrically calibrated and flat-fielded long-wave

TIR sensor surveys a planar scene from a fixed position at low altitude under arid

conditions with no near-surface wind; and the observations are performed during a

period of a stable anticyclone.

2.4 Dynamic Detection Models

Based on the space-invariant prediction, we can implement the DDMs as follows. At

the recognition time the inspection image Wtn
is first registered toward the basis

image sequence. To detect anomalies in the scene, the prediction coefficients c(tn)

corresponding to the inspection image are determined, along with the r.m.s. error of

prediction, stn
. Next, the coefficients are introduced into (6) and the predicted value

of pixel intensity, dW s, tnð ÞW s, tnð Þ , is computed by evaluating the right-hand side of (6).
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Finally, the following test is applied:

W s, tnð Þ{ dW s, tnð ÞW s, tnð Þ
���

���

stn

wz: ð11Þ

The threshold z controls the sensitivity of the detector.

For a classification task an inspection image pixel with an intensity wtn
is assigned

to thematic classes by Bayes’ formula. With the GM-based learning, both class-

conditional and unconditional distributions of the data are Gaussian mixtures

(McLachlan 1992, McLachlan and Peel 2001). At the training stage these

distributions are estimated for each basis time moment t1, …, tP, e.g. by using the

procedure proposed by Koltunov and Ben-Dor (2004). At the recognition time, we

estimate the parameter vector c(tn) of the parametric prediction model (6). If we

denote wb~ wt1
, . . . , wtP

ð ÞT (superscript ‘T’ standing for ‘transpose’) and exploit the

normal distribution properties, then up to a linear approximation, the expectation

Ewtn
and variance Var wtn

ð Þ are determined by

Ewtn
~ eHH Ewt1

, . . . , EwtP
; ª tnð Þ½ �, and Var wtn

ð Þ~+ eHT:C wbð Þ:+ eHH, ð12Þ

where + eHH is the gradient of eHH with respect to wt1
, . . . , wtP

and C represents the

covariance matrix of vector wb. Formulas (12) are applied to each Gaussian

component separately to obtain the class parameters corresponding to the

recognition time. Then, we apply Bayes’ formula, as usual, to compute the posterior

probabilities of class membership for pixels, and assign pixels to classes by the

Maximum A Posteriori Probability rule. For the case of the multi-channel feature

vector the covariances of the i-th and j-th bands at time tn are given by

s wi
tn

, w
j
tn

� �
~+ eHHT:Cij wbð Þ:+ eHH, ð13Þ

where C ji(wb) is the P6P matrix formed by the cross-time covariances

cov wi
tk

, w
j
tn

� �
; k, n51, …, P.

If in the course of the training stage the prediction operator eHH is chosen to be a

linear operator of past image intensities wb, then equalities (12)–(13) are exact. Also,

these equalities hold exactly after an obvious modification in the case of non-linear
eHH, such that

eHH wb; ª tnð Þ½ �~c1 tnð Þg1 wbð Þz � � �zcK tnð ÞgK wbð Þ,

where gk can be arbitrarily complicated functions of vector wb.

3. Practical aspects of multitemporal prediction and training

This section discusses several issues that are important for utilizing the image

predictability phenomenon and DDMs in practice. Among these issues are cross-

sensor prediction, the role of plurality of bands, selecting basis images or times, and

selecting indicators of prediction.

3.1 On mutually predictable fields and band plurality

Suppose there are several observation systems that differ in the technical parameters

of the sensors, for instance, band wavelengths or viewing angle. Then a reasonable
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question is when can the data of one system be used to predict the data of another

system. Empirically, partial answers to this question for the cases of hyperspectral

data and SAR–electro-optical data have been given in earlier work (Carlotto 2000,

Schaum and Stocker 1997). This section adds more details to this issue.

Let W(1) and W(2) denote two observation fields corresponding to two different

observation processes, w and y:

W 1ð Þ s, tð Þ~w b 1ð Þ sð Þ; Y 1ð Þ tð Þ
h i

,

W 2ð Þ s, tð Þ~y b 2ð Þ sð Þ; Y 2ð Þ tð Þ
h i

:

Then, analogously to (5), one can obtain the prediction model (for k51, ,52, or vice

versa):

W
kð Þ
t ~Hk‘ W

‘ð Þ
t1

, . . . , W
‘ð Þ
tP

h i
, if b 1ð Þ~b 2ð Þ, ð14Þ

where operatorHk‘ is a space-invariant operator. In other words, two fields with the

same temporal invariants are mutually predictable in time. Mutual predictability in

time (14) holds if the temporal invariants are equal, because b(,), found by

multitemporally measuring W(,), should replace b(k) in the observation process

model, as is shown in §2.1.

An example of mutually predictable fields W(1) and W(2) is when they are thermal

images acquired in different wavelength intervals L1 and L2, respectively. When

both bands L1 and L2 are sufficiently narrow and close to each other, the object’s

emissivity e(l) is nearly the same for both bands, and for any temperature T the

Planck’s function (Price 1989) denoted by B, satisfies the following approximate

equalities:

B T , l1ð Þ&B T , l2ð Þ and
L

LT
B T , l1ð Þ& L

LT
B T , l2ð Þ, ð15Þ

for any wavelengths: l1 gL1 and l2 gL2. Furthermore, assume that e(l) and the

objects’ thermo-physical characteristics prescribing the temporal variation of the

temperature can be different for different pixels, but they do not significantly change

with time, i.e. they are temporal invariants. Under these conditions, thermal images

acquired in sufficiently close and narrow intervals of wavelength are mutually

predictable.

Two observation fields obtained under different camera viewing angles h1 and h2

are generally not mutually predictable. In fact, the temporal changes in the camera

viewing angle may influence the measurements in a spatially non-uniform way,

according to the objects’ BRDFs. Hence, the temporal invariants that are learnable

by multitemporal remote sensing may be different for the two observation fields if

the scene contains objects that emit different amounts of energy in h1 and h2. Such

objects do not comply with the space-invariant prediction concept and a prediction

error is inevitable. The problem can be reduced by correcting the data first. The

correction accuracy depends on knowledge of the viewing geometries and the

objects’ BRDFs.

From (14) and the process of deriving (5), it can be inferred that using multi-

spectral data for predicting images instead of the previously collected multitemporal

data is incorrect, without additional assumptions. Formally, introducing an

additional band does add one more equation per basis time moment into system

64 A. Koltunov et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
8
:
3
2
 
2
4
 
N
o
v
e
m
b
e
r
 
2
0
0
8



(9), from which the temporal invariants should be resolved. However, some
invariants (e.g. functions of thermal inertia or its temporal evolution characteristics)

cannot be learned from multispectral data, whereas they can be learned from multi-

temporal data. Therefore, without assuming a low-parametric model of emissivity

the additional equations can only increase the accuracy of the measurement data in

the multitemporal system (9). However, they do not influence the system’s inverti-

bility. The band plurality, however, has been shown by Schaum and Stocker (2003)

to greatly improve the robustness of prediction with respect to misregistration of

reflective domain images across time. Yet another way of using multi- and hyper-
spectral sensing to increase image prediction accuracy is important. One can explore

the spatial distribution of the external factors within the scene. For instance, using a

three-channel ratioing technique (Gao et al. 1993) permits segmenting the scene into

several regions, each of which has its own spatial model of water vapor concen-

tration in the atmosphere. Then the prediction operator can be found separately for

each of these regions. Developing this idea should be the subject of future work.

3.2 Selection of basis images

The basis times are determined in advance, at the stage of training the detection

system. This sequence is split into Selection subsequence (SEL) and a Test

subsequence (TST). The simplest feasible approach to selecting the vector of basis

times is sketched below:

(i) choose an initial number of basis times P;

(ii) for a chosen P, select basis time points from SEL to minimize a prediction

error function over TST adjusted for the number of parameters in the
model;

(iii) if the prediction error does not decrease, then exit search;

(iv) increment P and goto step (ii).

The computation can be simplified if we take into account certain physical

reasoning to choose an initial number of basis times, as exemplified below.

3.2.1 Number of basis images. Using an asymptotic representation of surface

temperature in the form (10), it can be shown (Appendix A) that if the diversity of

the thermo-physical properties of the surfaces in the scene is not limited, then

N any thermal image can be represented by a linear combination of at least eight

basis images.

The number of linearly independent terms, m, in the right-hand side of (10), or

equivalently (A9), is the number of the principal independent factors forming the

surface temperature:

- downward solar irradiation;

- radiative heat transfer between the surface and the atmosphere;

- sensible heat flow;

- latent heat transfer;

- conductive heat flow from/to the bottom of diurnally active layer of soil.

Thus, in a general case, when all these factors are significant, m55. Iterating
equation (10), as exemplified in Appendix A, we obtain an approximate solution

given by
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DT s, tð Þ~
XM

k~1

bk sð ÞYk tð Þ, ð16Þ

where the terms bk (s) and Yk tð Þ are temporal and spatial invariants, respectively.

With one–two iterations, the number of invariants M may be 2–3 times greater
than m, leading to a lower bound: M>10,15.

Furthermore, the intensity value of a TIR channel image pixel can be described by

the following formula:

WT~

ð

L

$ lð ÞelB T , lð Þdlz

ð

L

$ lð Þ 1{elð ÞB Te, lð Þdl, ð17Þ

where $ (l) is the camera filter function; el is the emissivity; Te is the effective

temperature of the environment (in particular, of the sky), the radiation of which is

reflected by the scene’s objects; and L denotes the channel. Planck’s function is

nearly linear in temperature when |DT |(20 K. Therefore, linearizing Planck’s

function to convert the temperature model (16) to an analogous linear model for

radiance results in the number of basis times M increasing by two, when el negligibly

changes with time; or by three, when small temporal changes of emissivity are
possible. Furthermore, if we allow a scene to have a relief, then at least two terms

should be added to (10). Indeed, the downward solar irradiance is multiplied by the

factor W that depends on the solar zenith and azimuth angles, Z and Qsol; and on the

local topographic slope and aspect, S and Q, for example as suggested by Teillet et al.

(1982):

W~cosZ tð ÞcosSzsinZ tð ÞsinS cos Qsol tð Þ{Qð Þ: ð18Þ

Thus, under linear prediction conditions we can bound from below the number of basis
images: M>15,20. This initial estimate should be refined as suggested above in §3.2.

3.2.2 Selecting basis time moments. Some brief practical recommendations for

choosing the basis times t5[t1, …, tP] are as follows. First, the basis time moments

are chosen within the SEL to be the moments corresponding to the maximum and
minimum of each one of the heating/cooling factors listed in the previous section.

The rest of the basis time points are placed on the time axis equally spaced. Next, the

basis time vector t0 selected in this way is used as the starting value for an iterative

algorithm to minimize the prediction performance during the Test period. In

Appendix B, we derive a simple selection algorithm. This algorithm is more suitable

for the applications in which at the training stage the training scene can be surveyed

frequently, e.g. every 5–10 minutes.

When the scene visits are spaced by hours or more, as under polar orbiting
satellite sensing, one may choose to use additive stepwise regression. At each step of

this method, basis times are added to or removed from the prediction model to end

up with a maximal number of statistically significant terms in the model. The

coefficients whose significance values are less than a threshold are zeroed. The

problem of optimal selection of basis images in a general case needs further study.

3.3 Indicators of prediction

The principal sub-problems in our approach include

- choosing the form eHH of the parametric model (6);

66 A. Koltunov et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
C
D
L
 
J
o
u
r
n
a
l
s
 
A
c
c
o
u
n
t
]
 
A
t
:
 
1
8
:
3
2
 
2
4
 
N
o
v
e
m
b
e
r
 
2
0
0
8



- selecting the basis time vector t1, …, tP; and

- determining the indicators of prediction.

These tasks depend on each other. Therefore, they should be solved simultaneously

in the course of a recursive procedure. We leave this as a challenge for future
fundamental and experimental work. Presently, the issue of finding indicators is

better understood for the application ‘monitoring the status of a fixed, multi-

temporally surveyable area’. For this application the basis images and the detection

time image can be registered or georeferenced. Therefore, the set of indicators can be

the entire or randomized set of image pixel locations, except for known or detected

anomalies, i.e. outliers with respect to the prediction model. Another approach is to

search for pseudo-invariant objects in the scene (Furby and Campbell 2001, Schott

et al. 1988).

The unknown true operator of prediction is not linear in the general case.

Nevertheless, if we insist on a linear operator, then we actually make an
approximation of the true operator at the expense of adding more basis times.

Then the indicators of prediction that must be identified in the inspection image may

become too numerous. To this end, non-linear models with fewer free parameters

may be of greater practical value.

4. Experimental validation and examples of applications

The experimental work described below has several objectives stated in §1.

4.1 Proof-of-concept experiment using a fixed camera

If the basis images and their number are selected properly, then the prediction law

(5) should work well for all possible objects or materials. Therefore, a test site should

include a variety of surfaces that are substantially different in their thermo-physical

properties. Our site was constructed to include the following:

- a natural landscape with mixed grasses and shrubs;

- several types of bare soil (sea-sand, clay soil, organic matter);

- several types of stones (natural, man-made, matte, polished);

- a water reservoir;

- objects made of various metals (e.g. steel, aluminium), wood, paper and

paperboard, asphalt and concrete, glass, foamed plastic, and synthetic

polyamide materials;

- other two-dimensional and three-dimensional objects of various shapes.

The measurements were conducted in October 2002 in the vicinity of Tel-Aviv,

Israel, with a thermal camera (Agema) equipped with five filters in 3(l(5 mm. The

camera was not radiometrically calibrated but was maintained in a fixed position at

a height<4m and a viewing angle<40u.
Two oblique image sequences were acquired with an eight-day interval between

them. The first sequence was used for selecting basis images and the second one for

testing the model. In each sequence, the images were taken every 10 min for

50 hours. During the eight-day interval between the sequences, some objects were

moved from one place to another. The experiment was carried out under relatively
stable weather conditions, with the air temperature varying between 22 and 33uC.

However, partial cloudiness (0–4 oktas) and gusty wind (0–12 m s21) caused

frequent and rapid changes in the object surface temperatures. The temperature
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differences for different pixels (for a given frame), reached 40uC (also for the images

of the test sequence). The temporal differences for the same pixels reached 40–50uC.

Since the camera had uncontrollable spatial non-uniformity of the response function

of the detectors, the images were corrected, approximately each half-hour, using two

uniformly heated blackbody plates with different temperatures. In this experiment,

the search for basis images was conducted only among those images that were

corrected for spatial non-uniformity (87 images). The prediction was done by using

a linear operator of 20 basis images, determined by the algorithm relying on the high

frequency of surveying (see §3.2.2 and Appendix B).

4.1.1 Goodness of fit. Figure 1 shows as mosaics the examples of inspection

images, the corresponding predicted reference images, and the prediction residual

images at two different times of the day. The relatively bright areas in the residual

images are pixel-outliers with respect to the prediction model (5). They represent

those objects that have moved or changed during the interval between the

acquisition of basis images and the inspection image (such as the lid of the water

container or leaves of shrubs or grass), or the pixels that do not conform to the

prediction model. Figure 2 plots the relative prediction error (i.e. the absolute error

divided by the range of the data values) for the two images. The background r.m.s.

prediction error amounted to 1.7% for the night-time image and 2.3% for the

daytime image. With temperature differences of 40–50uC, this percentage is readily

calibrated to the brightness temperature prediction accuracy of 0.7–1.5uC.

4.1.2 Anomaly detection. Using basis images that do not contain anomalies, one

can construct the reference image that corresponds to the environment and the survey

Figure 1. (a) Observed TIR intensity images; (b) predicted reference images; (c) prediction
residual images. Prediction range – 8 days. Intensity values are linearly scaled to the range [0, 1].
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conditions of the inspection image currently observed. Suppose, during acquisition of

the test sequence a human enters the site. Figure 3(a) shows a day-time inspection

image with a barely distinguishable human partly occluded by the surrounding

background objects. However, after subtracting the reference image predicted by

Figure 2. Scatter plot of the relative prediction residual for the unchanged (background)
and moved / changed pixels at day time (a) and night time (b).

Figure 3. Anomaly detection. (a) IR image Wtn
with a man indistinguishable from the

background objects. (b) DDM-based prediction residual Wtn
{ eHHWt1

, . . . , Wt20
; ª½ �

���
���.

(c) Empirical prediction residual Wtn
{ aW tn{10minð Þzb
� ��� ��. (e) Empirical prediction residual

Wtn
{ aW tn{24hð Þzb
� ��� ��. ( f ) Empirical prediction residual Wtn

{ aW tn{10minð ÞzbW tn{24hð Þzc
� ��� ��.

(d ) Relative r.m.s. error of background prediction. Intensity values are linearly scaled to the
range [0, 1].
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(5), the scene anomalies (the human and the moving leaves) can be clearly seen

(figure 3b).

A simpler alternative to our method could be a bi-date normalization, which is

equivalent to using as a basis image an image Wtold
acquired under apparently ‘the

same’ weather conditions, e.g. 10 minutes or exactly 24 hours before tn (i.e. the time

the inspection image was taken). Then the background is predicted by a simple

linear relation

Wtn
~aWtold

zb: ð19Þ

The resulting residual images are shown in Figure 3(c,e ). As this figure suggests, not

only is the background prediction less accurate in terms of the r.m.s. error (see

figure 3d ), but it also leads to higher spatial clutter in the residual images. Not much

of an improvement was achieved when we used both previous images as the basis

images. Figure 3( f ) displays the corresponding residual images.

4.1.3 Intruder detection by DDM. Detecting a scene anomaly is not equivalent to

identifying a class ‘human-intruder’. In deciding whether an anomaly detected is or

is not a human, we used the multispectral intensity vectors. Using a database of

human images taken at the basis time weather conditions, we estimated the

Gaussian mixture parameters of class ‘human’ by the method proposed by

Koltunov and Ben-Dor (2004). The parameters of class background were computed

using the basis images. Furthermore, using the estimated prediction operator, we

recovered the dynamics of these parameters in the way described in §2.4, thus

obtaining the current weather versions of the parameters. Next, only the anomalous

pixels of the inspection frames (figure 4A) were classified. This was done by

maximization of the class posterior probabilities. In this way, the classifier can

ignore irrelevant anomalies due to a natural background motion (swaying grass or

bush leaves, in our case). The resulting classification image examples are shown in

Figure 4(c).

The complexity of the recognition problem in our example can be explained not

only by a significant background motion violating the method assumption. In

addition, at the time (more precisely, under the specific weather conditions) of

acquiring the inspection frames, the class ‘human’ was objectively inseparable from

many background classes, e.g. vegetation, in multispectral short-wave TIR data.

Therefore, even if we used the inspection image for training, as is conventionally

done (and not the past images), we would obtain false alarms all over the image.

This can be seen in Figure 4(b), which displays in dark tones all those pixels that

simply must be classified as ‘human’ in the scene, because of the class distribution

overlap at the recognition time.

This example shows that object classification by identifying an anomaly already

detected is more reliable and effective than classification using multispectral features

only. It can be especially useful for controlling the status of a known, previously

accessible territory.

4.2 Sub-pixel hot anomaly detection in MODIS imagery

In this section we demonstrate the applicability of the multitemporal prediction

approach presented in this paper to space-borne multitemporal datasets at a coarse

resolution. The thematic example-task is detection of subpixel-scale thermal

anomalies, such as fires.
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The scene S used in this experiment is located in Northern California and

occupies over 150 000 km2. Figure 5 displays the natural colour image of the scene.

The scene represents a typical western U.S. landscape, with a mosaic of forests, shrubs,

grasslands, urban structures, and water bodies. The MODIS instruments on the Terra

Figure 5. Natural colour image of the test scene located in Northern California. The scene is
confined within a bounding rectangle with the corner coordinates: 2124u369 W, 42u29240 N
(upper-left) and 2117u129 W, 39u369 N (lower-right). The image size is 2506600 pixels at the
ground resolution of 1 km. The MODIS bands used for [Red, Green, Blue] composition: [1, 4, 3].

Figure 4. Examples of intruder detection by DDM. Top row: detection of standing intruder.
Bottom row: detection of sitting intruder. Columns: (a) Inspection images with intruders; (b)
Class ‘human’ (dark tones), identified using pixels’ multispectral TIR features only.
Numerous false positives. (c) Scene anomaly identified as ‘human’, using DDM.
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and Aqua satellites overpass scene S three to seven times each 24-hour period,

collecting the data under different solar-view geometries and a nominal ground

resolution of 1 km at nadir. Two uncalibrated thermal bands: band 22 (,4mm) and

band 31 (,11mm) were used in our experiment. We denote these bands by R4 and R11,

respectively, and the corresponding brightness temperatures – by T4 and T11.

The multitemporal sequence consisted of 360 image frames acquired for eight

months (March 1 – November 1) of year 2004. The first 278 images were used for

training the anomaly detection algorithm. To assess the detection performance, we

selected 63 test image frames acquired 4 to 52 days after the images that we used for

training. These were 32 evening images and 31 morning ones. All images in the

sequence were georeferenced to a common projected coordinate system with

nearest-neighbour interpolation. The resulting ground pixel size was 1 km. Cloud-

contaminated observations were determined using the MODIS cloud mask data

(MOD35 and MYD35 products). The pixels flagged ‘not-determined’, ‘confident

cloud’, or ‘probably cloud’ in these products, were marked as having missing values

and excluded from processing.

The incremental selection algorithm (§3.2) with stepwise regression resulted in a

basis time vector containing 32 basis times. They were selected to minimize the

prediction error for band R4 only. First 259 images formed the Selection

subsequence and the next 19 images – the Test subsequence.

As can be seen from (5), only those pixels can be predicted that were available at

all basis times. However, primarily due to cloud cover, many pixels have missed

observations in one or more basis images. To overcome this problem, a

straightforward procedure was implemented in this paper. Given a basis time

vector tb of length P, at the training stage we constructed P additional vectors of

length P21 each, by excluding one basis time from tb. At the detection time, the

prediction coefficients were computed for each vector by stepwise regression, using

as indicators at most 2?104 pixel locations. These locations were chosen at random

out of those that were not missing in the current basis images or in the inspection

image. Finally, for each pixel a predictor with the smallest r.m.s. error (adjusted for

the number of parameters in the model) was chosen among the predictors for which

the pixel did not have missing values at the basis times.

4.2.1 Comparative evaluation of DDM performance. To compare the DDM to

other detection methods, we simulated 10 groups of 100 idealized fires each. All fires

were assumed to have the same temperature – 600 K and placed in the centres of

random pixels that were located on land and did not have missing observations. The

area of each fire in the k-th group was set to k?100 m2. The emitted radiance (under

the blackbody assumption) was computed by Plank’s law for each fire to alter the

actual pixel background radiance, according to the anomaly area proportion.

Finally, the radiances were converted back to the original digital counts. The rest of

the pixels, excluding known actual fires or pixels having missing values, were

considered background pixels. In general, using the simulated fire data may bias the

absolute characteristics of the method performance. However, the use of simulated

data is necessary and acceptable for comparing different methods or their

components. Furthermore, when actual anomalies occur in the image with low

probability, modeling is the only practical way to obtain a large and representative

test set over the limited time range and scene size.

Two other techniques compared to the DDM are described as follows:
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MOD: The contextual method implemented in the standard MODIS fire product

(MOD14) logically combines a series of contextual and absolute-threshold tests,

preceded and followed by additional algorithms to filter out false positives. The

contextual tests are applied to the swath data and use the valid neighbouring pixels in

windows of variable size to estimate two background statistics: the mean and the mean

absolute deviation. Details can be found in Giglio et al. (2003). In our comparison we

used the combination of two contextual tests comprising the central part of the method:

T4wmT4
zn4d4 ð20Þ

DTwmDTzndDT , ð21Þ

where DT ~
def

T4{T11; mT4
, mDT denote the mean values of T4 and DT, respec-

tively; and d4, dDT denote their mean absolute deviations. The thresholds n and n4

that can be calibrated to detection confidence control the test sensitivity. The optimized

selection of valid neighbours and the window size was implemented as described by

Giglio et al. (2003).

BiDate: A two-date method that predicts the detection image background by linearly

transforming a previous image taken at a time tprev as close as possible to the same time

of the day as the detection image, e.g.: dR4 tð ÞR4 tð Þ~aR4 tprev

� �
zb, which is identical to (19)

and was used by Schott et al. (1988) and by Furby and Campbell (2001).

All methods but BiDate were applied to 63 detection times. To avoid inventing a

way to deal with missing observations that would be appropriate for BiDate, we

applied this method to 10 cloud-free evening images. Our method, DDM, was

applied to R4 and DR ~
def

R4{R11, which provided the equivalent for the brightness

temperature tests, (20) and (21), by Giglio et al. (2003). Finally, for all methods we

logically combined the two tests to obtain the higher performance fire detectors.

Note that all methods combined the single-band tests in the identical way: ‘a pixel is

flagged fire if and only if both tests return true’. Therefore, the discrepancy between

the detection results were solely due to differences between methods.

Figure 6 plots the false positive rates given the fixed true detection rates. As is

evident from this figure, the performance of DDM is similar to that of the state-of-

the-art contextual method, MOD, during evening hours. In morning hours, DDM

significantly outperformed MOD. Averaged over the test period false alarm rates

are shown in figure 7. Overall, DDM committed about 13–20% fewer false positives

than MOD in the evening and 1.5 to 3.5 times fewer false positives than MOD in

morning hours. The simple bi-date technique showed considerably lower performance

than the other two methods.

5. Discussion and conclusion

The abstractness and mathematical formality of presenting the joint prediction

approach, in our opinion, emphasize its generality and potential applicability to

various physical phenomena and processes. For instance, besides thermal anomaly

detection and near-real-time classification, the space-invariant prediction approach

could be applied to predicting geomagnetic field variations, forecasting weather, or

taking into account motion and shape variability of 3D objects to be recognized.

Focusing on thermal infrared, we have also illustrated the predictability phenomenon

from thermo-physical perspective (§2.3 and Appendix A) by deriving the simplest

thermal imagery predictor expressed in terms of physically meaningful quantities.
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Both the general form of the prediction law (§2.1) and the explicit TIR example-model

(A15) have been derived for a single-channel case. Thus, in contrast to previous work

(Schaum and Stocker 1997), our prediction approach applies equally under

hyperspectral, multispectral, or even single-channel surveillance.

The model of the observation process does not have to be known or assumed

linear. As mentioned in §2, the key assumption is that the observation process can be

represented in the form, in which any parameter does not simultaneously depend on

time and on spatial location. Consequently, as long as the sensor response function

is spatially uniform it can be viewed as an additional space-invariant factor of

external influence. That is why a correction for spatial non-uniformity (e.g.

destriping) improves the prediction accuracy, whereas radiometric calibration or

any other space-invariant preprocessing manipulations with the raw data, whether

they are linear or not, are absolutely unnecessary for using our approach. If the

camera viewing angle varies with time, the observation process models correspond-

ing to different viewing angles are different. Therefore, the accuracy of image

prediction and classification may considerably deteriorate for highly non-

Lambertian objects. Overcoming this problem without additional prior knowledge

would require that basis images be taken from multiple directions. The MODIS

images used as the basis images in our example were actually taken from different

angles, which was helpful for prediction.

Theoretically, the absolute range of prediction is not an issue because Dt does not

appear in the final formulas anywhere. What does matter, however, is how long the

Figure 6. MODIS dataset over the Northern California scene. False positive rates for the
anomaly detection algorithms (see §4.2.1) combining the R4-test with the DR-test.
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temporal invariants that have been learned from a given set of basis images will be

the only spatially non-uniform factors influencing the measurements. For the case of

TIR surveillance, this may depend on the variability of local weather conditions

within a given period. Besides that, under real conditions after extended surveillance

periods the object properties at most pixel locations may be found to have changed

since the basis times. Therefore the same set of basis images will not remain good

indefinitely long for all pixels.

The implicit parameterization mechanism explained in §2.2 leads to an important

conclusion. The restrictions on the spatial behaviour of the external factors and the

temporal behaviour of the objects’ properties are removed at the expense of

introducing additional basis fields into the prediction model. Conversely, if

prediction is to be made for a limited variability (spatial or temporal) of external

conditions or for a limited set of objects, then the number of basis fields that is

sufficient for prediction can be reduced. Therefore, simple empirical approaches, e.g.

bi-date image normalization, can work well for some objects and under some

external conditions. To this end, in our preliminary experiment it was important

that the DDM was tested for diverse objects and materials in a scene with complex

three-dimensional structure and shading effects. Likewise, the MODIS data were

characterized by a high spatial and temporal variability of external conditions. The

prediction models used in these experiment were not the best possible: not all

temporal invariants were accurately resolved, owing to the technical limitations in

the selection of basis images and perhaps, due to the linearity of the model. As a

result, some objects were predicted less accurately. In the tower-based experiment,

these included a polished stone and some objects’ boundaries. Also, in the MODIS

data experiment, we observed spatially contiguous regions of low prediction

Figure 7. MODIS dataset over the Northern California scene. False positive rates averaged
over 48 days (Sept. 4–Nov. 1, 2004) for the anomaly detection algorithms combining the R4-
test with the DR-test.
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accuracy that could be attributed to local changes (relative to the basis times) in

vegetation conditions, or to local sunlight or cloud influences. Nevertheless, the

underfitted prediction models provided considerable improvements over their

counterparts.

The accuracy of the background prediction may be lower when the scene is

severely clouded at the detection time, and therefore a sufficiently complex

prediction model cannot be built for the lack of indicators.

5.1 The prospect of applying DDM for exploration of new territories

The most challenging potential application of the DDM is classification of a new

territory. For this application, the multitemporally surveyed training scene and the

recognition scene (i.e. the new territory) are geographically different areas. In this

case the DDM requires that the recognition scene contain only those classes that are

represented in the training scene, which may at first seem to be always unrealistic

due to enormous diversity of the Earth’s surface. The assumption becomes indeed

unrealistic if the notion of the training scene is mistaken as a spatially contiguous,

geographically compact area whose size is so small that the external conditions

remain the same for the time of surveying the area. The actual meaning of the notion

‘training scene’ used by the DDM is substantially wider, as specified below:

N Training scene does not have to occupy a single, geographically compact area:

it can and should comprise a plurality of geographically different sites, further

termed sub-scenes; the distance between any two sub-scenes is limited only by

the Earth’s equator length, e.g. they may be situated in different continents,

along the satellite overpass or aircraft flight lines.

N Though each sub-scene comprising the training scene must be surveyed

multitemporally, they are not required to be surveyed simultaneously or under

the same external factors.

N The only objects that must be present in each sub-site and during each survey

are the prediction indicators. This requirement is met easily if the sub-scenes

are partly overlapping.

Multitemporal data from different sub-scenes can be merged by sequentially

appending the data of a new training sub-scene Snew to the data of an already

existing training sub-scene Sold. The information about thematic categories of Snew

can be extracted prior to the multitemporal survey, by the traditional means of

training data acquisition.

Overall, it can be concluded from the above discussion that applicability of

Dynamic Detection Models under the most difficult circumstances is a wide and

interesting topic for future studies and experiments. In many circumstances, it is

better or sufficient to apply the traditional supervised statistical classification with

the training data sampled from the inspection image. Below are examples of such

circumstances:

- past images are too few or unavailable;

- prior information about the recognition site is enough to form the correct list

of classes and obtain training data that are representative of the thematic

classes;

- near-real-time performance is not required.
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In addition, only if the prediction operator is determined with a high accuracy, can

the past training data provide the equivalent for the training data selected from the

current image.

5.2 Summary and conclusion

The contributions of the present paper include the following developments:

(i) a generic law of predictability of physical observations is derived;

(ii) underlying assumptions and several practical aspects of multitemporal

prediction are discussed for the first time, including selection and the
number of past images, indicators of prediction, underlying assumptions;

(iii) lower bounds on the number of past thermal infrared images are obtained;

(iv) algorithms for automatic selection of the basis images and number thereof

are described;

(v) a DDM using a Gaussian mixture based classifier is proposed;

(vi) the proof-of-concept tests are performed;

(vii) potential applications are suggested and exemplified.

In conclusion, we emphasize that the multitemporal predictability phenomenon is
a general fact rather than representing occasional empirical successes and can be

productive for solving a range of thematic tasks. Yet, at present, many of the issues

raised in this paper need further research. Furthermore, a more complete list of

theoretical and practical problems, as well as classification and detection tasks that

can be solved using the space-invariant prediction model, should be formulated. We

hope that future studies will determine how to best utilize this objectively existing

phenomenon to make good use of data from repeatable remote sensing missions.
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Appendix A: Thermo-physical insight into the image predictability

phenomenon

This appendix illustrates the material from §2 from a thermo-physical perspective by

considering a specific case of prediction: predicting a radiometrically calibrated

thermal infrared image. This is done under the conditions, in which the explicit

formulas for the prediction operator will be least complicated (see also §2.3). The

scope of the notation and the symbols we use (see table 1) is limited to the present
appendix only.

Consider the following circumstances:

(1) The scene is planar and horizontal.

(2) All scene objects have a large interior area, and thus the heat flow at the

interior points is nearly vertical.

(3) The observation field W consists of only the interior points of the objects.

(4) Thermo-physical parameters, albedo, and the emissivity of different objects

vary but are time-invariant.

(5) The external influence (from the sun and the atmosphere) is space-invariant.

(6) Narrow-band long wave TIR surveying: each band L has a filter that is
uniform in wavelength l; and the bandwidth dl is small enough to assume the

emissivities e(l) and the Planck function B l, Tð Þ independent of l within the

band. The scene is surveyed from a low altitude. The sensor is radiometrically

calibrated and flat-fielded.
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(7) Weather/surface conditions: stable anticyclone with no near-surface wind; an

arid environment. Thus, the sensible and latent heat transfer components of

the surface energy balance are considered negligible; the only heating/cooling

factors are solar irradiance, the radiative heat exchange between the scene

objects and the atmosphere, and the conductive heat flux at the bottom of the

diurnally active layer of soil, referred to as the depth flux. The depth flux is

assumed constant within the observation period. The atmospheric transmit-

tance approaches one. The weather conditions are not periodic.

Under the assumptions (1)–(5), the depth distribution of temperature T(x, t) for all

points of the objects can be described by a one-dimensional heat equation

LT x, tð Þ
Lt

~a2 L2T x, tð Þ
Lx2

, ðA1Þ

with two boundary conditions and an initial condition:

{k
LT 0, tð Þ

Lt
~G tð Þ; on the surfaceð Þ ðA2Þ

k
LT ?, tð Þ

Lt
~Q; at the bottom of the diurnally active layerð Þ ðA3Þ

T x, t0ð Þ~w0 xð Þ; the initial depth distribution of the temperatureð Þ ðA4Þ

where G(t)5R(t) + H(t) + L(t); and R is the net flux of radiation, H is the sensible

heat flux, L is the latent heat flux, and Q is the depth flux. The net flux on the

surface can be conventionally expressed (Price 1989) as the difference between the

absorbed and emitted radiation described by the Stefan–Boltzmann law.

R~ 1{Að ÞRsunzeRatm{esT 4: ðA5Þ

Table 1. Symbols used in Appendix A.

Symbol Description Units

x depth m
t time s
T temperature K
R net radiation flux density J m22 s21

H sensible heat flux density J m22 s21

L latent heat flux density J m22 s21

Q depth flux density J m22 s21

a2 thermal diffusivity m2 s21

k thermal conductivity J m21 K21 s21

Rsun downward solar irradiance J m22 s21

Ratm downward atmospheric irradiance J m22 s21

A surface albedo integrated over 0.4(l(3mm dimensionless
e surface emissivity integrated over 3(l(30 mm dimensionless
s Stefan–Boltzmann constant 5.7?1028 J m22 K24 s21

2 thermal inertia J m22 K21 s21/2

l wavelength mm
dl narrow band width mm
el surface emissivity at wavelength l dimensionless
B T , lð Þ Planck’s function (spectral radiance) J m22 mm21 s21

r density kg m23
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The solution of problem (A1)–(A4) is given (Tikhonov and Samarsky 1963) by the

following function:

T x, tð Þ~Q

k
xz

1

2
ffiffiffi
p
p

ð

t0

tQzG gð Þ
ffiffiffiffiffiffiffiffiffi
t{g
p dgz

1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
pa2Dt
p

ð

0

?

e{
x{jð Þ2

4a2Dt {e{
xzjð Þ2

4a2Dt

	 

w0 jð Þ{Q

k
j

	 

dj,ðA6Þ

where 2~k
. ffiffiffiffiffi

a2
p

denotes the thermal inertia and Dt5t2t0. On the surface (x50),

equation (A6) reduces to

T tð Þ~ 1

2
ffiffiffi
p
p
ðt

t0

QzG gð Þ
ffiffiffiffiffiffiffiffiffi
t{g
p dgz

1
ffiffiffiffiffiffiffiffiffiffiffiffi
pa2Dt
p

ð?

0

e
{ j2

4a2Dt w0 jð Þ{ Q

k
j

	 

dj: ðA7Þ

Here the second term reflects the influence of w0(x), the initial depth-distribution of

temperature. It is reasonable to assume that this influence vanishes with time, which

allows us to impose the limitation of the initial distribution:

w0 xð Þ~T0z
Q

k
x, ðA8Þ

where T0 is some constant. The difference between the real, unknown w(x) and (A8)

soon becomes unimportant for determining the surface temperature by (A7), if we

choose t0 such that G(t0)50, as in Price (1989), and set T05T(t0). Hence we arrive at

the asymptotic representation:

T tð Þ~T0z
1

2
ffiffiffi
p
p

ð

t0

t 1
ffiffiffiffiffiffiffiffiffi
t{g
p Qz 1{Að ÞRsun gð Þze Ratm gð Þ{sT4 gð Þ

� �
zH gð ÞzL gð Þ

� �
dg: ðA9Þ

Under the above assumptions (5)–(7), the spatial-temporal field W(s, t), measured at

channel L, depends on time through the objects’ temperatures T, and at a given

location s it can be written:1

W T , lð Þ~elB T , lð Þdlz 1{elð ÞB Te, lð Þdl, ðA10Þ

where Te is the effective temperature of the environment (in particular, of the sky),

the radiation of which is reflected by the scene’s objects.

Furthermore, with reasonable variability of the temperature |T2T0|(20 K, we

can write

max
t

DT

T0

����

���� & 0:06, where DT ~
def
T{T0,

and therefore approximate the Planck’s function by

B T , lð Þ&B T0, lð ÞzDT :
L

LT
B T0, lð Þ: ðA11Þ

In view of assumption (7), the on-surface representation (A9) reduces to the

following integral equation:

DT~
2Q

ffiffiffiffiffi
Dt
p

2
ffiffiffi
p
p z

1{A
2

ffiffiffi
p
p

ð

t0

tRsun gð Þ
ffiffiffiffiffiffiffiffiffi
t{g
p dgz

e

2
ffiffiffi
p
p

ð

t0

tRatm gð Þ
ffiffiffiffiffiffiffiffiffi
t{g
p dg{

e

2
ffiffiffi
p
p

ð

t0

tsT 4 gð Þ
ffiffiffiffiffiffiffiffiffi
t{g
p dg, ðA12Þ

1 The channel downwelling atmospheric radiance is approximated by the Planck’s function. Clearly, more accurate

representations are also possible (Susskind et al. 1983).

,
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Note that the last integral in (A12) depends on the object’s temperature, and

therefore it is intrinsically variable in space. That is why we cannot directly derive

from this equation a space-invariant prediction model. To overcome the problem,

we recognize that (A12) reduces to a Fredholm integral equation of the second

kind (Milman 1999). Consequently, it can always be solved iteratively.

Introducing the 97%-accurate linearization T4~T4
0 z4T3

0DT into the right-hand

side of (A12) and performing one iteration of the successive approximation

method of solving integral equations, we obtain an approximate solution given

by

DT~
X6

i~1

mi sð Þzi tð Þ, ðA13Þ

where

m1~
1{A
2

ffiffiffi
p
p ; m2~

e

2
ffiffiffi
p
p ; m3~

1

2
ffiffiffi
p
p : Q

s
{eT 4

0

 �
;

m4~
4 1{Að ÞseT 3

0

p22
; m5~{

4se2T 3
0

p22
; m6~{m5T

4
0 ;

z1~

ð

t0

tRsun gð Þdg
ffiffiffiffiffiffiffiffiffi
t{g
p ; z2~

ð

t0

tRatm gð Þdg
ffiffiffiffiffiffiffiffiffi
t{g
p ; z3~2s

ffiffiffiffiffi
Dt
p

;

z4~

ð

t0

tz1 gð Þdg
ffiffiffiffiffiffiffiffiffi
t{g
p ; z5~

ð

t0

tz2 gð Þdg
ffiffiffiffiffiffiffiffiffi
t{g
p ; z6~2s

ð

t0

t
ffiffiffiffiffiffiffiffiffiffiffi
g{t0
t{g

r
dg:

Finally, we introduce (A13) into (A11), and then (A11) into (A10), resulting in

W s, tð Þ~
X7

k~0

ak sð ÞXk tð Þ, ðA14Þ

where Xk~zk, ak~mk
: el

L
LT
B T0, lð Þdl for 1ƒkƒ6ð Þ, X0~1, X7~B Te, lð Þ, a0~

elB T0, lð Þdl, and a7~ 1{elð Þdl.

Equation (A14) inherits its separated-dependency form from (A13). It is a linear

case of (2) and can be used to make predictions in time or in space. To predict W at a

new time tn one should

(a) perform N>8 surveys at the properly chosen basis time moments t1, …, tP to

obtain Wb ~
def

Wt1
, . . . , WtN

ð Þ;
(b) determine vector a from the system: XT Wb~XT Xa, where X is the 86N

matrix formed by Xk(tj); and

(c) introduce the solution a~ XT X
� �{1

XT Wb into (A14) with t5tn, thus

obtaining:

Wtn
~X tnð ÞT XT X

� �{1
XT :Wb: ðA15Þ

Now, observe that expression (A15) is an explicit form of (5) with a linear space-

invariant operator. Thus, we have shown:
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Under the set of assumptions (1)–(7), any thermal image can be represented by

a linear combination of at least eight properly selected basis images. The

coefficients of the linear combination depend only on the survey time.

The lower bound for the number of basis images needed for linear prediction is

obtained under the set of first-order approximations. Clearly, higher-order

approximations do not affect the bound. Similarly, if we assume more complex

circumstances, for example, when the sensible and latent heat are not negligible,

then again, the number of basis images that are necessary for a minimally accurate

prediction of thermal images will only increase. For example, we can use in (A9) a

common expression (Price 1989) for the convection flux:

H t, T tð Þð Þ~rair tð Þcp tð Þ
T tð Þ{Tair tð Þ
ln2 h1=h0ð Þ k2v tð Þ, ðA16Þ

where the variables are rair, the density of air; cp, heat capacity of air; Tair, the air

temperature; h0, the surface roughness length; v, the wind speed; a standard

height h1 (52 m); and k, the von Karman constant. Then iteratively solving (A9),

as shown above, will introduce at least two additional independent terms into

(A13).

Appendix B: An example of a basis time search algorithm

As before, we let W(s, t) denote the observed value at spatial location s and at time t.

Consider bWW s, t, tð Þ (i.e. the predicted value of W(s, t)) as a function of the basis time

vector t of length P. Let K denote the number of prediction indicators used to

determine bWW s, t, tð Þ. Let Dt denote the time interval between the images in the

Selection period, and h ~
def

t{t0.

To search for the best displacement vector h, when Dt is small, we can use a locally

optimal algorithm that exploits the image intensity gradient with respect to t and

iteratively updates the displacement. We use the prediction error function E(t),

which is the sum of square differences over the Test subsequence (TST) images that

is adjusted for the degrees of freedom:

E tð Þ~ K

K{P

X

t[TST

X

s

W s, tð Þ{ bWW s, t, tð Þ
h i2

, ðB1Þ

where P is the number of elements in vector t. Linearizing bWW s, t, tð Þ near t0, we

obtain the following minimization problem with respect to h:

E hð Þ~ K

K{P

X

t[TST

X

s

W s, tð Þ{ bWW s, t, t0ð Þ{ L
Lt
bWW s, t, t0ð Þ:h

	 
2

?min
h
: ðB2Þ

Then the unknown vector h is found as a solution of the system:

LE hð Þ
Lhj

~
X

t[TST

X

s

W s, tð Þ{ bWW s, t, t0ð Þ{ L
Lt
bWW s, t, t0ð Þ:h

	 

: L
Ltj

bWW s, t, t0ð Þ~0

j~1, . . . P,

ðB3Þ
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where the partial derivative L
Ltj

bWW s, t, t0ð Þ is approximated by

L
Ltj

bWW s, t, t0ð Þ~
bWW s, t, t0,1, . . . , t0,j{1, t0,jzDt, t0,jz1, . . . , t0,P

� �
{ bWW s, t, t0ð Þ

Dt
:

This algorithm (or its weighted version) can be combined with multi-scale
smoothing of the Selection period sequence across time.
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